Biosynthesis of Plant Sterols: Stereochemistry of Hydrogen Elimination at C-7 in α-Spinasterol

By RAMESHWAR K. SHARMA

(Veterans Administration Hospital and College of Basic Medical Sciences, Department of Biochemistry, University of Tennessee, Memphis, Tennessee 38104)

Summary It is indicated that the 7β -hydrogen of lanosterol derived from the 2-proS hydrogen of mevalonic acid (MVA) is removed in the biosynthesis of α -spinasterol.

It has been shown previously that the biosynthesis of cholesterol in a rat liver preparation involves a 5,7-diene intermediate and that during the formation of this intermediate the 7β -hydrogen of lanosterol is eliminated. The (3H:14C ratio 6.30, atomic ratio 3.23:5). This proves the absence of tritium atom at the C-7 position in the biosynthesized α-spinasterol isolated from Camellia sinensis. It also indicates that the 7β -hydrogen of lanosterol derived from the 2-proS hydrogen of MVA is removed in the formation of this phytosterol. Since the biosynthesized α -spinasterol derived from [2R-2-3H]MVA has four tritium atoms, it is inferred that there is no tritium at 22R. This supports

The ³H: ¹⁴C ratios of the products obtained after the administration of 3R-[2-¹⁴C-(2R)-2-³H₁]MVA (³H: ¹⁴C ratio 9.37) and 3R-[2-¹⁴C-(2S)-2-3H₁]MVA (3H: 14C ratio 9.74) to a Camellia sinensis plant

	3R-[2-14C-(2R)-2-8H ₁]MVA 8H: 14C Ratio	3R-[2- ¹⁴ C-(2S)-2- ³ H ₁]MVA ³ H: ¹⁴ C Ratio
α-Spinasterol	7-27	5.90
3β -Acetoxy $-5\alpha(H)$ -stigmast-7-ene		5.78
3β -Acetoxy- 7α , 8α -dihydroxy-		
$5\alpha(H)$ -stigmastane		5.75
3β -Acetoxy- 8α -hydroxy- $5\alpha(H)$ -		
stigmastan-7-one		6.30

 7β -hydrogen of lanosterol was shown also to be lost when the biosynthesis of poriferasterol was investigated in Ochromonas malhamensis.2 However, in the yeast homogenate, the biosynthesis of C-27 cholesteryl analogues takes place by the elimination of the 7\alpha-hydrogen via the formation of a Δ^7 -olefin.³

Since α -spinasterol (I) has a Δ^7 bond, we evaluated the mechanism of the formation of this double bond in this phytosterol.

 $3R-[2-^{14}C-(2R)-2-^{3}H_{1}]MVA$ (II) ($^{3}H:^{14}C$ ratio 9.37, 50 μc of ¹⁴C) or 3R-[2-¹⁴C-(2S)-2-³H₁]MVA (III) (³H: ¹⁴C ratio 9.74, 50 μ c of ¹⁴C) was administered to the Camellia sinensis plant.4 The plant was harvested after five weeks and α-spinasterol (I) was isolated from the non-saponifiable lipid.4 The carrier α-spinasterol was added and the sterol crystallized to constant specific activity and ³H: ¹⁴C ratio.

The ³H: ¹⁴C ratio obtained by the incorporation of $[2R-2-{}^{14}C-2-{}^{3}H]$ mevalonic acid was $7\cdot 27$ (atomic ratio 3.82:5), indicating the presence of four tritium atoms. The ³H: ¹⁴C ratio obtained by the incorporation of [2S-2-¹⁴C-2-3H] mevalonic acid was 5.90 (atomic ratio 3.03:5), indicating the presence of three tritium atoms.

The α-spinasterol biosynthesized from [2S-2-14C-2-3H]-MVA (III) was first acetylated and then hydrogenated over platinum oxide catalyst to give 3β -acetoxy- $5\alpha(H)$ stigmast-7-ene⁵ (IV) (³H: ¹⁴C 5.78, atomic ratio 2.96:5). The reaction of (IV) with osmium tetroxide in pyridine⁶ yielded 3β -acetoxy- 7α , 8α -dihydroxy- $5\alpha(H)$ -stigmastane (V) (3H:14C ratio 5.75, atomic ratio 2.95:5). Oxidation of (V) (chromium trioxide-pyridine) gave 3β -acetoxy- 8α -hydroxy- $5\alpha(H)$ -stigmastan-7-one (VI) without the loss of tritium

the earlier observation² that the C-22 hydrogen originating from the 2-proR hydrogen of MVA is lost in the introduction of the Δ^{22} bond.

(Received, January 2nd, 1970; Com. 014.)

- ¹ E. Caspi, J. B. Greig, P. J. Ramm, and K. R. Varma, *Tetrahedron Letters*, 1968, 3829.
 ² A. R. H. Smith, L. J. Goad, and T. W. Goodwin, *Chem. Comm.*, 1968, 926.
 ³ E. Caspi and P. J. Ramm, *Tetrahedron Letters*, 1969, 181.

- ⁴ R. K. Sharma, Phytochemistry, in the press.
- D. H. R. Barton and J. D. Cox, J. Chem. Soc., 1948, 1354.
 L. F. Fieser and M. Fieser, "Steroids," Reinhold, New York, 1959, p. 240.